ports/math/mate-calc/files/patch-src_mp.c
2021-10-09 16:33:25 -07:00

81 lines
2.4 KiB
C

--- src/mp.c.orig 2021-08-04 12:19:50 UTC
+++ src/mp.c
@@ -59,7 +59,7 @@ mp_new(void)
}
MPNumber
-mp_new_from_unsigned_integer(ulong x)
+mp_new_from_unsigned_integer(unsigned long x)
{
MPNumber z;
mpc_init2(z.num, PRECISION);
@@ -413,16 +413,16 @@ mp_reciprocal(const MPNumber *x, MPNumber *z)
void
mp_root(const MPNumber *x, long n, MPNumber *z)
{
- ulong p;
+ unsigned long p;
if (n < 0)
{
mpc_ui_div(z->num, 1, x->num, MPC_RNDNN);
if (n == LONG_MIN)
- p = (ulong) LONG_MAX + 1;
+ p = (unsigned long) LONG_MAX + 1;
else
- p = (ulong) -n;
+ p = (unsigned long) -n;
}
else if (n > 0)
{
@@ -490,7 +490,7 @@ mp_factorial(const MPNumber *x, MPNumber *z)
else
{
/* Convert to integer - if couldn't be converted then the factorial would be too big anyway */
- ulong value = mp_to_unsigned_integer(x);
+ unsigned long value = mp_to_unsigned_integer(x);
mpfr_fac_ui(mpc_realref(z->num), value, MPFR_RNDN);
mpfr_set_zero(mpc_imagref(z->num), MPFR_RNDN);
}
@@ -656,11 +656,11 @@ mp_zeta(const MPNumber *x, MPNumber *z)
* Returns TRUE if @n is probable prime and FALSE otherwise.
*/
static bool
-mp_is_pprime(MPNumber *n, ulong rounds)
+mp_is_pprime(MPNumber *n, unsigned long rounds)
{
MPNumber tmp = mp_new();
MPNumber two = mp_new_from_unsigned_integer(2);
- ulong l = 0;
+ unsigned long l = 0;
bool is_pprime = TRUE;
/* Write t := n-1 = 2^l * q with q odd */
@@ -680,7 +680,7 @@ mp_is_pprime(MPNumber *n, ulong rounds)
MPNumber a = mp_new_from_unsigned_integer(1);
MPNumber b = mp_new();
- for (ulong i = 1; (i < mp_to_integer(&t)) && (i <= rounds+1); i++)
+ for (unsigned long i = 1; (i < mp_to_integer(&t)) && (i <= rounds+1); i++)
{
mp_add_integer(&a, 1, &a);
mp_modular_exponentiation(&a, &q, n, &b);
@@ -752,7 +752,7 @@ mp_gcd (const MPNumber *a, const MPNumber *b, MPNumber
* Returns FALSE otherwise.
*/
static bool
-mp_pollard_rho (const MPNumber *n, ulong i, MPNumber *z)
+mp_pollard_rho (const MPNumber *n, unsigned long i, MPNumber *z)
{
MPNumber one = mp_new_from_unsigned_integer(1);
MPNumber two = mp_new_from_unsigned_integer(2);
@@ -809,7 +809,7 @@ static void
find_big_prime_factor (const MPNumber *n, MPNumber *z)
{
MPNumber tmp = mp_new();
- ulong i = 2;
+ unsigned long i = 2;
while (TRUE)
{