mirror of
https://git.freebsd.org/ports.git
synced 2025-07-18 09:49:18 -04:00
Add py-spvcm 0.3.0
Gibbs sampling for spatially-correlated variance-components This is a package to estimate spatially-correlated variance components models/varying intercept models. In addition to a general toolkit to conduct Gibbs sampling in Python, the package also provides an interface to PyMC3 and CODA. WWW: https://github.com/pysal/spvcm
This commit is contained in:
parent
a969ae95d6
commit
ff64a64035
Notes:
svn2git
2021-03-31 03:12:20 +00:00
svn path=/head/; revision=560049
4 changed files with 39 additions and 0 deletions
|
@ -848,6 +848,7 @@
|
||||||
SUBDIR += py-splot
|
SUBDIR += py-splot
|
||||||
SUBDIR += py-spot
|
SUBDIR += py-spot
|
||||||
SUBDIR += py-spreg
|
SUBDIR += py-spreg
|
||||||
|
SUBDIR += py-spvcm
|
||||||
SUBDIR += py-ssm
|
SUBDIR += py-ssm
|
||||||
SUBDIR += py-statsmodels
|
SUBDIR += py-statsmodels
|
||||||
SUBDIR += py-statsmodels010
|
SUBDIR += py-statsmodels010
|
||||||
|
|
27
math/py-spvcm/Makefile
Normal file
27
math/py-spvcm/Makefile
Normal file
|
@ -0,0 +1,27 @@
|
||||||
|
# Created by: Po-Chuan Hsieh <sunpoet@FreeBSD.org>
|
||||||
|
# $FreeBSD$
|
||||||
|
|
||||||
|
PORTNAME= spvcm
|
||||||
|
PORTVERSION= 0.3.0
|
||||||
|
CATEGORIES= math python
|
||||||
|
MASTER_SITES= CHEESESHOP
|
||||||
|
PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}
|
||||||
|
|
||||||
|
MAINTAINER= sunpoet@FreeBSD.org
|
||||||
|
COMMENT= Fit spatial multilevel models and diagnose convergence
|
||||||
|
|
||||||
|
LICENSE= BSD3CLAUSE
|
||||||
|
|
||||||
|
RUN_DEPENDS= ${PYTHON_PKGNAMEPREFIX}libpysal>=0:science/py-libpysal@${PY_FLAVOR} \
|
||||||
|
${PYTHON_PKGNAMEPREFIX}numpy>=0,1:math/py-numpy@${PY_FLAVOR} \
|
||||||
|
${PYTHON_PKGNAMEPREFIX}pandas>=0,1:math/py-pandas@${PY_FLAVOR} \
|
||||||
|
${PYTHON_PKGNAMEPREFIX}scipy>=0:science/py-scipy@${PY_FLAVOR} \
|
||||||
|
${PYTHON_PKGNAMEPREFIX}seaborn>=0:math/py-seaborn@${PY_FLAVOR} \
|
||||||
|
${PYTHON_PKGNAMEPREFIX}spreg>=0:math/py-spreg@${PY_FLAVOR}
|
||||||
|
|
||||||
|
USES= python:3.6+
|
||||||
|
USE_PYTHON= autoplist concurrent distutils
|
||||||
|
|
||||||
|
NO_ARCH= yes
|
||||||
|
|
||||||
|
.include <bsd.port.mk>
|
3
math/py-spvcm/distinfo
Normal file
3
math/py-spvcm/distinfo
Normal file
|
@ -0,0 +1,3 @@
|
||||||
|
TIMESTAMP = 1609598753
|
||||||
|
SHA256 (spvcm-0.3.0.tar.gz) = ce331bd5d6bcb64a07c4393093f3978763cfc8764ad0737e1866f3905e6cceae
|
||||||
|
SIZE (spvcm-0.3.0.tar.gz) = 5724408
|
8
math/py-spvcm/pkg-descr
Normal file
8
math/py-spvcm/pkg-descr
Normal file
|
@ -0,0 +1,8 @@
|
||||||
|
Gibbs sampling for spatially-correlated variance-components
|
||||||
|
|
||||||
|
This is a package to estimate spatially-correlated variance components
|
||||||
|
models/varying intercept models. In addition to a general toolkit to conduct
|
||||||
|
Gibbs sampling in Python, the package also provides an interface to PyMC3 and
|
||||||
|
CODA.
|
||||||
|
|
||||||
|
WWW: https://github.com/pysal/spvcm
|
Loading…
Add table
Reference in a new issue