mirror of
https://git.freebsd.org/ports.git
synced 2025-06-03 11:56:28 -04:00
math/py-Py-BOBYQA: New port: Flexible derivative-free solver for general objective minimization
This commit is contained in:
parent
0a6f672ba6
commit
c4a6ac08f5
4 changed files with 30 additions and 0 deletions
|
@ -880,6 +880,7 @@
|
|||
SUBDIR += py-GridDataFormats
|
||||
SUBDIR += py-MutatorMath
|
||||
SUBDIR += py-PuLP
|
||||
SUBDIR += py-Py-BOBYQA
|
||||
SUBDIR += py-PyMetis
|
||||
SUBDIR += py-PySCIPOpt
|
||||
SUBDIR += py-PyWavelets
|
||||
|
|
21
math/py-Py-BOBYQA/Makefile
Normal file
21
math/py-Py-BOBYQA/Makefile
Normal file
|
@ -0,0 +1,21 @@
|
|||
PORTNAME= Py-BOBYQA
|
||||
DISTVERSION= 1.4
|
||||
CATEGORIES= math python
|
||||
MASTER_SITES= PYPI
|
||||
PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}
|
||||
|
||||
MAINTAINER= yuri@FreeBSD.org
|
||||
COMMENT= Flexible derivative-free solver for general objective minimization
|
||||
WWW= https://numericalalgorithmsgroup.github.io/pybobyqa/build/html/index.html
|
||||
|
||||
LICENSE= GPLv3
|
||||
|
||||
RUN_DEPENDS= ${PYNUMPY} \
|
||||
${PYTHON_PKGNAMEPREFIX}pandas>=0.17:math/py-pandas@${PY_FLAVOR} \
|
||||
${PYTHON_PKGNAMEPREFIX}scipy>=0.17:science/py-scipy@${PY_FLAVOR}
|
||||
# extras: trustregion
|
||||
|
||||
USES= python
|
||||
USE_PYTHON= distutils autoplist
|
||||
|
||||
.include <bsd.port.mk>
|
3
math/py-Py-BOBYQA/distinfo
Normal file
3
math/py-Py-BOBYQA/distinfo
Normal file
|
@ -0,0 +1,3 @@
|
|||
TIMESTAMP = 1699762548
|
||||
SHA256 (Py-BOBYQA-1.4.tar.gz) = 71090cad226e25192c797abd63cdba4c6f1c45114328b1a30619eb541d8e132a
|
||||
SIZE (Py-BOBYQA-1.4.tar.gz) = 38165
|
5
math/py-Py-BOBYQA/pkg-descr
Normal file
5
math/py-Py-BOBYQA/pkg-descr
Normal file
|
@ -0,0 +1,5 @@
|
|||
Py-BOBYQA is a flexible package for finding local solutions to nonlinear,
|
||||
nonconvex minimization problems (with optional bound constraints), without
|
||||
requiring any derivatives of the objective. Py-BOBYQA is a Python implementation
|
||||
of the BOBYQA solver by Powell (documentation here). It is particularly useful
|
||||
when evaluations of the objective function are expensive and/or noisy.
|
Loading…
Add table
Reference in a new issue